domingo, 1 de marzo de 2009

permutaciones y combinaciones

Jovenes espero que esta información les sea de utilidad para resolver ejercicios de permutaciones y combinaciones.


a) Combinaciones:
Determina el número de subgrupos de 1, 2, 3, etc. elementos que se pueden formar con los "n" elementos de una nuestra. Cada subgrupo se diferencia del resto en los elementos que lo componen, sin que influya el orden.

Por ejemplo, calcular las posibles combinaciones de 2 elementos que se pueden formar con los números 1, 2 y 3.
Se pueden establecer 3 parejas diferentes: (1,2), (1,3) y (2,3). En el cálculo de combinaciones las parejas (1,2) y (2,1) se consideran idénticas, por lo que sólo se cuentan una vez.

Ejemplo: C10,4 son las combinaciones de 10 elementos agrupándolos en subgrupos de 4 elementos:
Es decir, podríamos formar 210 subgrupos diferentes de 4 elementos, a partir de los 10 elementos.

b) Variaciones:
Calcula el número de subgrupos de 1, 2, 3, etc. elementos que se pueden establecer con los "n" elementos de una muestra. Cada subgrupo se diferencia del resto en los elementos que lo componen o en el orden de dichos elementos (es lo que le diferencia de las combinaciones).

Por ejemplo, calcular las posibles variaciones de 2 elementos que se pueden establecer con los número 1, 2 y 3.
Ahora tendríamos 6 posibles parejas: (1,2), (1,3), (2,1), (2,3), (3,1) y (3,3). En este caso los subgrupos (1,2) y (2,1) se consideran distintos.

Para calcular el número de variaciones se aplica la siguiente fórmula:
La expresión "Vm,n" representa las variaciones de "m" elementos, formando subgrupos de "n" elementos. En este caso, como vimos en la lección anterior, un subgrupo se diferenciará del resto, bien por los elementos que lo forman, o bien por el orden de dichos elementos.

Ejemplo: V10,4 son las variaciones de 10 elementos agrupándolos en subgrupos de 4 elementos:
Es decir, podríamos formar 5.040 subgrupos diferentes de 4 elementos, a partir de los 10 elementos.

c) Permutaciones:
Calcula las posibles agrupaciones que se pueden establecer con todos los elementos de un grupo, por lo tanto, lo que diferencia a cada subgrupo del resto es el orden de los elementos.

Por ejemplo, calcular las posibles formas en que se pueden ordenar los número 1, 2 y 3.
Hay 6 posibles agrupaciones: (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2) y (3, 2, 1)


Ejemplo: P10 son las permutaciones de 10 elementos:
Es decir, tendríamos 3.628.800 formas diferentes de agrupar 10 elementos.

Combinaciones con Repetición

Vamos a analizar ahora que ocurriría con el cálculo de las combinaciones, de las variaciones o de las permutaciones en el supuesto de que al formar los subgrupos los elementos pudieran repetirse.

Por ejemplo: tenemos bolas de 6 colores diferentes y queremos formar subgrupos en los que pudiera darse el caso de que 2, 3, 4 o todas las bolas del subgrupo tuvieran el mismo color. En este caso no podríamos utilizar las fórmulas que vimos en la lección anterior.


Ejemplo: C'10,4 son las combinaciones de 10 elementos con repetición, agrupándolos en subgrupos de 4, en los que 2, 3 o los 4 elementos podrían estar repetidos:
Es decir, podríamos formar 715 subgrupos diferentes de 4 elementos.

Variaciones con repetición:
Para calcular el número de variaciones con repetición se aplica la siguiente fórmula:
Ejemplo: V'10,4 son las variaciones de 10 elementos con repetición, agrupándolos en subgrupos de 4 elementos:
Es decir, podríamos formar 10.000 subgrupos diferentes de 4 elementos.

Permutaciones con repetición:
Para calcular el número de permutaciones con repetición se aplica la siguiente fórmula:
Son permutaciones de "m" elementos, en los que uno de ellos se repite " x1 " veces, otro " x2 " veces y así ... hasta uno que se repite " xk " veces.

Ejemplo: Calcular las permutaciones de 10 elementos, en los que uno de ellos se repite en 2 ocasiones y otro se repite en 3 ocasiones:
Es decir, tendríamos 302,400 formas diferentes de agrupar estos 10 elementos.

Las formulas a aplicar son las vistas en clases. Espero que todos ustedes esten armando su portafolio de evidencias con los ejercicios realizados en clases.
Vean este video por favor http://www.youtube.com/watch?v=pqQl8eePRrg

jueves, 12 de febrero de 2009

Sistemas numericos

Espero lean y resuelvan los ejercicios propuestos:

1.2. SISTEMA BINARIO
Es el sistema digital por excelencia, aunque no el único, debido a su sencillez. Su base es 2Emplea 2 caracteres: 0 y 1. Estos valores reciben el nombre de bits (dígitos binarios). Así, podemos decir que la cantidad 10011 está formada por 5 bits. Veamos con un ejemplo como se representa este número teniendo en cuenta que el resultado de la expresión polinómica dará su equivalente en el sistema decimal:
1.3. SISTEMA OCTAL
Posee ocho símbolos: 0, 1, 2, 3, 4, 5, 6, 7. Su base es 8.Este sistema tiene una peculiaridad que lo hace muy interesante y es que la conversión al sistema binario resulta muy sencilla ya que, 8 = 23 . Así, para convertir un número de base 8 a binario se sustituye cada cifra por su equivalente binario en el apartado 1.5. Conversiones se estudiará esta conversión.
1.4. SISTEMA HEXADECIMAL.
Está compuesto por 16 símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Su base es 16. Es uno de los sistemas más utilizados en electrónica, ya que además de simplificar la escritura de los números binarios, todos los números del sistema se pueden expresar en cuatro bits binarios al ser 16 = 24. La conversión de un número hexadecimal a uno binario es muy sencilla al igual que en el sistema octal, profundizaremos en ello en el apartado 1.5.
1.5. CONVERSIONES
CONVERSIÓN ENTRE BINARIO Y DECIMAL
Si la conversión es de binario a decimal, aplicaremos la siguiente regla: se toma la cantidad binaria y se suman las potencias de 2 correspondientes a las posiciones de todos sus dígitos cuyo valor sea 1. Veamos dos ejemplos:
1011112 = 1.25+0.24+1.23+1.22+1.21+1.20 = 4510
101012= 1.24+0.23+1.22+0.21+1.20 = 2110 Si la conversión es de decimal a binario, aplicaremos la siguiente regla: se toma la cantidad decimal dada y se divide sucesivamente entre 2. Los restos obtenidos en cada división (0, 1), forman la cantidad binaria pedida, leída desde el último cociente al primer resto.

CONVERSIÓN ENTRE OCTAL Y DECIMAL
Si la conversión es de octal a decimal se procederá como observas en el ejemplo:
7408= 7.82+4.81+4.80 = 48410
Si la conversión es de decimal a octal se procederá de modo similar a la conversión de decimal a binario, pero dividiendo entre 8. Comprueba los resultados en el siguiente ejemplo:
42610 = 6528

La conversión entre binario y hexadecimal es igual al de la conversión octal y binario, pero teniendo en cuenta los caracteres hexadecimales, ya que se tienen que agrupar de 4 en 4. La conversión de binario a hexadecimal se realiza según el ejemplo siguiente
Ejemplo:
1011111,1100012
Agrupando obtenemos el siguiente resultado:0101 1111, 1100 01002
Sustituyendo según la tabla logramos la conversión esperada:
5F, C416

Lean sus apuntes y suerte cualquier duda publiquen el comentario.